Abstract

The manufacture of a biocompatible carrier for controlled delivery of bioactive compounds is described. This carrier is composed of a mesoporous silica nanoparticle as core that is homogenously distributed in an injectable hydrogel. For the synthesis of nanoparticles, a one step sol-gel method is developed to produce pores with the range of 100nm. BMP2 and Fluorescein-conjugated bovine serum albumin is used as proteinaceous agents for measuring release, and is loaded into mesoporous silica nanoparticles at the optimum conditions of 48 h incubation period using 1:10 ratio of protein to nanoparticles. The release of proteins from either mesoporous nanoparticles or hydrogel individually involves a burst release stage, however the release from the core/shell carrier designed in this study follows a zero order kinetic. In summary, this biomaterial may be favorable for delivery of bioactive compounds such as BMP2 for a range of applications including bone tissue regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.