Abstract

Sustained potential oscillations are experimentally observed in a proton exchange membrane fuel cell with PtRu as anode catalyst and with CO as the anode feed when operating under a constant current density mode. These oscillations appear at fuel-cell temperatures below 70°C. A threshold value exists for both the current density and the anode flow rate at a given fuel-cell temperature for their onset. The temperature dependence of the oscillation period shows an apparent activation energy around 60 kJ/mol. The potential oscillations are believed to be due to the coupling of anode electro-oxidation of and CO on the PtRu catalyst surface, on which is formed more readily, i.e., at lower overpotentials. A simple kinetic model is provided that can reproduce the observed oscillatory phenomenon both qualitatively and quantitatively. © 2002 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.