Abstract
The green alga, Chlamydomonas reinhardtii, is capable of sustained H(2) photoproduction when grown under sulfur-deprived conditions. This phenomenon is a result of the partial deactivation of photosynthetic O(2)-evolution activity in response to sulfur deprivation. At these reduced rates of water-oxidation, oxidative respiration under continuous illumination can establish an anaerobic environment in the culture. After 10-15 hours of anaerobiosis, sulfur-deprived algal cells induce a reversible hydrogenase and start to evolve H(2) gas in the light. Using a computer-monitored photobioreactor system, we investigated the behavior of sulfur-deprived algae and found that: (1) the cultures transition through five consecutive phases: an aerobic phase, an O(2)-consumption phase, an anaerobic phase, a H(2)-production phase and a termination phase; (2) synchronization of cell division during pre-growth with 14:10 h light:dark cycles leads to earlier establishment of anaerobiosis in the cultures and to earlier onset of the H(2)-production phase; (3) re-addition of small quantities of sulfate (12.5-50 microM MgSO(4), final concentration) to either synchronized or unsynchronized cell suspensions results in an initial increase in culture density, a higher initial specific rate of H(2) production, an increase in the length of the H(2)-production phase, and an increase in the total amount of H(2) produced; and (4) increases in the culture optical density in the presence of 50 microM sulfate result in a decrease in the initial specific rates of H(2) production and in an earlier start of the H(2)-production phase with unsynchronized cells. We suggest that the effects of sulfur re-addition on H(2) production, up to an optimal concentration, are due to an increase in the residual water-oxidation activity of the algal cells. We also demonstrate that, in principle, cells synchronized by growth under light:dark cycles can be used in an outdoor H(2)-production system without loss of efficiency compared to cultures that up until now have been pre-grown under continuous light conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.