Abstract

Respiratory dysfunction is a major cause of death in people with spinal cord injury (SCI). A remaining unsolved problem in treating SCI is the intolerable side effects of the drugs to patients. In a significant departure from conventional targeted nanotherapeutics to overcome the blood-brain barrier (BBB), this work pursues a drug-delivery approach that uses neural tracing retrograde transport proteins to bypass the BBB and deliver an adenosine A1 receptor antagonist drug, 1,3-dipropyl-8-cyclopentyl xanthine, exclusively to the respiratory motoneurons in the spinal cord and the brainstem. A single intradiaphragmatic injection at one thousandth of the native drug dosage induces prolonged respiratory recovery in a hemisection animal model. To translate the discovery into new treatments for respiratory dysfunction, we carry out this study to characterize the purity and quality of synthesis, stability, and drug-release properties of the neural tracing protein (wheat germ agglutinin chemically conjugated to horseradish peroxidase)-coupled nanoconjugate. We show that the batch-to-batch particle size and drug dosage variations are less than 10%. We evaluate the nanoconjugate size against the spatial constraints imposed by transsynaptic transport from pre to postsynaptic neurons. We determine that the nanoconjugate formulation is capable of sustained drug release lasting for days at physiologic pH, a prerequisite for long-distance transport of the drug from the diaphragm muscle to the brainstem. We model the drug-release profiles using a first-order reaction model and the Noyes-Whitney diffusion model. We confirm via biological electron microscopy that the nanoconjugate particles do not accumulate in the tissues at the injection site. We define the nanoconjugate storage conditions after monitoring the solution dispersion stability under various conditions for 4 months. This study supports further development of neural tracing protein-enabled nanotherapeutics for treating respiratory problems associated with SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.