Abstract

Many aquaculture systems generate high amounts of wastewater containing compounds such as suspended solids, total nitrogen and total phosphorus. Today, aquaculture is imperative because fish demand is increasing. However, the load of waste is directly proportional to the fish production. Therefore, it is necessary to develop more intensive fish culture with efficient systems for wastewater treatment. A number of physical, chemical and biological methods used in conventional wastewater treatment have been applied in aquaculture systems. Constructed wetlands technology is becoming more and more important in recirculating aquaculture systems (RAS) because wetlands have proven to be well-established and a cost-effective method for treating wastewater. This review gives an overview about possibilities to avoid the pollution of water resources; it focuses initially on the use of systems combining aquaculture and plants with a historical review of aquaculture and the treatment of its effluents. It discusses the present state, taking into account the load of pollutants in wastewater such as nitrates and phosphates, and finishes with recommendations to prevent or at least reduce the pollution of water resources in the future.

Highlights

  • Introduction and Aims of the ReviewWorldwide, there is a growing contamination of soil and irrigation water, caused, among other reasons, by intensive agricultural use and environmentally-unfriendly activity, which is due to the need to generate ever greater quantities of food to meet the demands of the growing population.Today, aquaculture is growing rapidly: according to the FAO [1], aquaculture provides 47%(51 million tons) of the global human fish consumption

  • This review aims at giving an overview about aquaculture systems developed in historical times which could still be valuable for the future, about the present problems, and about innovative ideas, especially with respect to the integration of halophytic plants as biofilter in saline aquaculture systems

  • As existing hydroponic and aquaculture farming techniques form the basis for all aquaponics systems, the size, complexity, and types of foods grown in an aquaponics system can vary as much as any system found in either distinct farming discipline [6,9,10]

Read more

Summary

Introduction and Aims of the Review

There is a growing contamination of soil and irrigation water, caused, among other reasons, by intensive agricultural use and environmentally-unfriendly activity, which is due to the need to generate ever greater quantities of food to meet the demands of the growing population. It is necessary to intensify the production using technologies such as water recirculation systems and proper treatment to optimize this valuable resource Is it important to reduce the pressure on the coastlines and produce large amounts of fish in inland aquaculture systems close to consumers. In recent years long-forgotten historical approaches have been recovered and adapted to new technologies, such as the parallel production of fish with filter feeders and plants or algae, even in multi-trophic systems [2,3]. This concept is applicable to many standard aquaculture installations, such as ponds or net cages. This review aims at giving an overview about aquaculture systems developed in historical times which could still be valuable for the future, about the present problems, and about innovative ideas, especially with respect to the integration of halophytic plants as biofilter in saline aquaculture systems

Systems Combining Aquaculture and Plants
Historical Overview of Aquaculture and Treatment of Its Effluents
Present State
Wastewater Management
Solids Loads
Nutrient Load
Feed Quality
Bead Filters
Wetlands
Wetland Area Estimation
Salt-Tolerant Plants used as Biofilters in Wetlands
Removal Efficiency of Wetlands
Present Problems
The Potential Use of Mangroves
Findings
Outlook
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.