Abstract

Sepsis is an aberrant systemic inflammatory response mediated by excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Developing an efficient antioxidant therapy for sepsis via scavenging ROS and RNS remains a big challenge owing to the insufficient activity and sustainability of conventional antioxidants. Herein, biocompatible transition-metal dichalcogenide antioxidants with excellent scavenging activity and sustainability for H2O2, O2•-, OH•, and nitric oxide are developed for effective sepsis treatment. WS2, MoSe2, and WSe2 nanosheets exfoliated and functionalized with a biocompatible polymer effectively scavenge mitochondrial and intracellular ROS and RNS in inflammatory cells. Among the nanosheets, WS2 most efficiently suppresses the excessive secretion of inflammatory cytokines along with scavenging ROS and RNS without affecting the expression levels of the anti-inflammatory cytokine and ROS-producing enzymes. The WS2 nanosheets significantly improve the survival rate up to 90% for severely septic mice by reducing systemic inflammation. The pharmacokinetics suggests that the WS2 nanosheets can be excreted from mice 3 days after intravenous injection. This work demonstrates the potential of therapeutic nanosheet antioxidants for effective treatment of ROS and RNS-related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.