Abstract

Product designers are seeking effective ways to meet customer requirements, government policies, and internal business drivers for sustainability. Sustainable products encompass attributes including recyclable and renewable materials use, low energy consumption, cost competitiveness, and consideration of safety and health concerns. Beyond product attributes, however, sustainable products are cognizant of a broader life cycle perspective, which necessitates consideration of manufacturing and supply chain issues during design. Current life cycle assessment tools are often deficient in assisting design for manufacturing efforts due to coarseness of available process data or even a lack of representative process models. In addition, such tools consider only the environmental impacts and do not account for broader sustainability measures. Research with a titanium component manufacturer is addressing these deficiencies. A unit process modeling-based method is described to assist in strategic decision making to balance cradle-to-gate economic, environmental, and social attributes. A set of metrics is defined and used as a basis for comparison of design alternatives. The method is demonstrated for analysis of titanium component alternatives resulting from design for manufacturing activities. It is shown that this method can assist engineers in developing more sustainable products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.