Abstract

An electrochemical method for regenerating copper-loaded ion exchange media was investigated. The method involved circulating a moderate pH regenerant solution between a bed of ion exchange media and an electrochemical cell. The electrochemical regeneration process eliminates more than 99% of the acid and base use associated with conventional regeneration, consumes no water, produces metallic copper, and eliminates the production of a copper-laden sludge. Experiments were performed measuring copper plating rates as a function of the aqueous copper concentration, cell current, and flow rate. Experiments were also performed to determine the equilibrium partitioning of copper ions between the solution and the ion exchange media under loading and regeneration conditions. A mathematical model was developed and calibrated using experimental data, to provide guidance for the design of electrochemical ion exchange regeneration systems. The model incorporates the plating kinetics, the stripping of copper from the resin, and the equilibrium isotherm and predicts aqueous and adsorbed copper concentrations during the regeneration process. The model indicates that, in 789 min, 90% of copper can be removed from a resin loaded with 50 mg(Cu)/g(resin). An economic analysis indicates that energy costs for plating are less than 1% of chemical costs for conventional ion exchange regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.