Abstract

The multistep synthesis of a hybrid material based on a TiO2 core with an immobilized triazine-based copper(II)-NNN pincer complex is reported. The formation of the material was confirmed by FT-IR spectroscopy and elemental and thermogravimetric analyses, and the loading by copper ions was quantified by ICP/OES analysis. The properties of the hybrid material were further investigated by X-ray photoelectron spectroscopy (XPS), contiuous wave electron spin resonance (CW-ESR), UV-vis spectroscopy, and argon sorption. Efficient and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles was achieved by employing the hybrid material as a catalyst in a mixture of H2O/EtOH as a green solvent with excellent catalytic activity with a TOF up to 495 h-1 at 50 °C. The reusability of the prepared hybrid material in the catalytic reaction was possible over five consecutive runs without significant loss of catalytic activity. The described method represents an effective way to ensure sustainable use of pincer complexes in catalytic systems by immobilizing them on solid supports, resulting in a hybrid organic-inorganic catalyst platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.