Abstract

Additive manufacturing is a technology gaining ground in fields where a high degree of product customization is required; in particular, several aspects need to be explored concerning traditional technologies, such as the variety of materials and their consumption. It also remains to be clarified whether these technologies can contribute to the ecological transition when applied in healthcare. This study compares two technologies for producing clear dental aligners: thermoforming and direct 3D printing. The former method thermoforms a polymeric disc over 3D-printed, customized models. The second, more innovative approach involves directly printing aligners using Additive Manufacturing (AM), specifically applying Digital Light Processing (DLP) technology. The study conducts a comparative Life Cycle Assessment (LCA) analysis to assess the environmental impact of these two different manufacturing processes. The research results highlight that adopting direct printing through AM can bring advantages in terms of environmental sustainability, thanks to the reduction in raw materials and electricity consumption. These drops are drivers for the decreased potential environmental impacts across all impact categories considered within the EF 3.1 method. Furthermore, lowering the amount of raw material needed in the direct printing process contributes to a notable decrease in the overall volume of waste generated, emphasizing the environmental benefits of this technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.