Abstract
Biomass-derived carbon dots (CDs) are gaining much interest in recent times, as they provide a sustainable option with abundant availability, a low cost and tunable luminescence. Herein, we report a simple green synthesis method to produce highly fluorescent CDs from Eucalyptus globulus leaves using the one-pot hydrothermal approach. The fabricated CDs exhibit strong blue fluorescence with an excitation and emission maxima of 320 nm and 445 nm, respectively. The highest quantum yield (QY) obtained was 60.7%. With the reported optical properties and biocompatibility, CDs can be looked at as a promising candidate for potential biosensing applications. Moreover, we employed a life cycle assessment (LCA) cradle-to-gate approach to study the environmental impacts of the synthesis strategy used for the fabrication of CDs. The results point out that citric acid is the main hotspot in CD synthesis, regarding environmental impacts in most categories. This justifies the introduction of biomass, which reduces the amount of citric acid, thus leading to a more sustainable synthesis strategy for fabricating CDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.