Abstract

The development of III-Nitride suspended structures for Micro-Electro Mechanical Systems (MEMS) and Nano-Electro Mechanical Systems (NEMS) is challenging due to lack of selective etching techniques. Recent efforts have focused on the removal of sacrificial layers based on material properties, such as crystalline quality, bandgap, polarity, doping, etc. These techniques require several processing steps in addition to precise control over the sacrificial and functional layer properties. In this work, conditions have been identified for the growth of etch-resistant polycrystalline AlN films via Metal Organic Vapor Phase Epitaxy (MOVPE) on silicon oxide surfaces, thus allowing silicon oxide to be used as a sacrificial layer in a surface micro-machining process. The MOVPE growth conditions reported result in a well oriented crystal with superior mechanical strength demonstrated by the fabrication of unsupported AlN structures with widths from 5 μm to 110 μm and air gaps ranging from 200 nm to 800 nm. This technique simplifies the fabrication process of AlN suspended structures and is well suited for achieving group III-Nitride heteroepitaxial MEMS/NEMS systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.