Abstract

In this study, susceptibility to SCC of nanostructured Cu-10wt%Zn alloys, produced by equal-channel angular pressing (ECAP) was investigated under the constant stress test in ammonia vapour, which has been well-known typical environment for IGSCC of Cu-Zn alloy. Billets having diameter of 20 mm and length of 100 mm were subjected to ECAP for eight passes at room temperature to obtain structure with grain size of about 100 nm. After ECAP, some of the billets were flush-annealed in 473 K for 60 seconds to decrease excessive unequilibrium dislocations at grain boundaries. Coarse grained specimens without ECAP and one-pass specimens were also tested for comparison. The specimens for SCC were tensioned by a constant load in ammonia vapour inside a glass chamber for 24 hours at room temperature. After the SCC tests, maximum length of cracks was evaluated by SEM. Specimen having UFG structure by 8-passes exhibited cracks in lower applied stress ratio, (=σa/σys) compared with 0- and 1-pass samples, where σa is applied stress and σys is yield stress, respectively. Most importantly, the specimen with annealed at 473K for 60s after ECAP cracked in higher applied stress. It became less sensitive to SCC after flush annealing although mechanical properties were not changed considerably. In our previous studies, we reported that the SCC of UFG copper produced by ECAP, and the sensitivity to SCC becomes lower by flush annealing. Results are discussed in terms of grain boundary state with or without extrinsic grain boundary dislocations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.