Abstract

The neurological syndrome caused by Plasmodium berghei ANKA in rodents partially mimics the human disease. Several rodent models of cerebral malaria (CM) exist for the study of the mechanisms that cause the disease. However, since common laboratory mouse strains have limited gene pools, the role of their phenotypic variations causing CM is restricted. This constitutes an obstacle for efficient genetic analysis relating to the pathogenesis of malaria. Most common laboratory mouse strains are susceptible to CM, and the same major histocompatibility complex (MHC) haplotype may exhibit different levels of susceptibility. We analyzed the influence of the MHC haplotype on overcoming CM by using MHC congenic mice with C57BL/10 and C3H backgrounds. No correlation was found between MHC molecules and the development of CM. New wild-derived mouse strains with wide genetic polymorphisms were then used to find new models of resistance to CM. Six of the twelve strains tested were resistant to CM. For two of them, F(1) progeny and backcrosses performed with the reference strain C57BL/6 showed a high level of heterogeneity in the number and characteristics of the genetic factors associated with resistance to CM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.