Abstract

The combined contamination of cadmium (Cd) and microplastics (MPs) in paddy soil always occurred, while its influence on Cd availability remained unclear. This study investigated the Cd availability in Cd-MPs co-contaminated paddy soil in consideration of both ferric minerals and sulfate reduction under flooding conditions. The presence of MPs resulted in a higher Cd releasing risk, as represented by the increase in the available Cd and decrease in Fe-Mn oxide-bound Cd contents, especially on the 7th and 14th days based on the sequential extraction results. MPs facilitated the formation of Fe-organic ligands, which accelerated the reductive dissolution of iron minerals but decreased the amounts of amorphous iron minerals due to the release of dissolved organic substances into pore water. Furthermore, MPs promoted the relative abundance of sulfate-reducing bacteria (such as Streptomyces and Desulfovibrio genera), thus increasing the contents of reductive S species, which was advantageous to the co-precipitation of Fe, S, and Cd on the surface of MPs based on our experimental and statistical results. Taken together, both iron and sulfate reduction under anaerobic conditions played a critical role in Cd mobilization in Cd-MPs co-contaminated paddy fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.