Abstract

Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.

Highlights

  • Sodium (Na+) is an abundance element in the earth

  • The well-germinated seeds were subjected to salinity treatment and its length and number of lateral roots produced from each genotype were recorded (Fig 2)

  • We selected the most susceptible line (SS2-SS18) and most tolerant line (SS1-SS14) based on highest/lowest root length and number of lateral roots produced under salinity condition

Read more

Summary

Introduction

Sodium (Na+) is an abundance element in the earth. Ocean itself make up of 71% of the surface of earth and it is not surprising that most plants will get in contact with Na+ at their growth phase. Agricultural practices (i.e. fertilizer application, poor irrigation systems coupled with increasing sea levels) have led to poor water quality and saline soil conditions [1]. Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections glycophyte, is very susceptible to saline soil. Prolonged exposure to saline conditions causes stress in these plants and leads to a significant decrease in grain production [2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.