Abstract
Reliability data on MEMS accelerometers operating in harsh environments is scarce. Micro-electro-mechanical systems (MEMS) are used in a variety of military and automotive applications for sensing acceleration, translation, rotation, pressure and sound. This research work focuses on dual axis MEMS accelerometer reliability in harsh environments. Structurally an accelerometer behaves like a damped mass on a spring. Commercially there are three types of accelerometers namely piezoelectric, piezoresistive and capacitive depending on the components that go into the fabrication of the MEMS device. Previously, majority of concentration was focused on an effective internal design, performance enhancement of CMOS-MEMS accelerometers and packaging techniques Cheng [2002], Qiao [2009], Lou [2005], and Weigold [2001]. Studies have also been conducted to obtain an enhanced inertial mass SOI MEMS process using a high sensitivity accelerometer Jianbing [2013], Chen [2005]. There have been prior test(s) conducted on MEMS accelerometers, Jiang [2004], Cao [2011], Chun-Sun [2009], Lou [2009], Tanner [2000] and Yang [2010] but the availability of data on reliability degradation of such devices in harsh environments Brown [2003] is almost little to none which thereby generates the importance of this work and also makes way for a whole new path involving the reliability assessment techniques for MEMS devices. Concentration of our work is primarily on the reliability of this accelerometer upon sequential exposure to harsh environment(s) and drop-shock. Reliability of accelerometers in high G environments is unknown. The effects of these pre-conditions along with the drop test condition has been studied and analyzed. In this piece of research work, a test vehicle with a MEMS accelerometer, ADXL278 dual axis capacitive accelerometer, has been tested under high/low temperature exposure followed by subjection to high-g and low-g shock loading environments. The test boards have been subjected to mechanical shocks using the method 2002.5, condition G, under the standard MIL-STD-883H test. The stress environment and the test condition used for this paper are 1500g and 70g respectively where 70g is the full scale range output of ADXL278 in the drop direction with pulse duration set to 0.5millisecond. The deterioration of the accelerometer output has been characterized using the techniques of Mahalanobis distance and Confidence intervals. Scanning Electron Microscopy (SEM) has been used to study the different failure modes inside of the accelerometer, which were potted and polished and later de-capped. Furthermore, the non-destructive evaluations of the MEMS accelerometer have been demonstrated through X-rays and micro-CT scans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.