Abstract
Constructing a renewable energy-based power system has become an important development path for the power industry’s low-carbon transformation. However, as the proportion of renewable energy generation (REG) increases, the power grid gradually changes to uncertainty. Technologies to address this issue have been introduced. However, the majority of existing reviews focus on specific uncertainty modeling approaches and applications, lacking the consideration of temporal and spatial interdependence. Therefore, this paper provides a comprehensive review of the uncertainty modeling of temporal and spatial interdependence. It includes the discrete and continuous stochastic process-based methods to address temporal interdependence, the correlation coefficient and copula functions in modeling spatial interdependence, and the Itô process and random fields theory to describe temporal and spatial interdependence. Finally, their applications in power system stability, control, and economic scheduling are summarized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.