Abstract

Computer simulation models are ubiquitous in modern engineering design. In many cases, they are the only way to evaluate a given design with sufficient fidelity. Unfortunately, an added computational expense is associated with higher fidelity models. Moreover, the systems being considered are often highly nonlinear and may feature a large number of designable parameters. Therefore, it may be impractical to solve the design problem with conventional optimization algorithms. A promising approach to alleviate these difficulties is surrogate-based optimization (SBO). Among proven SBO techniques, the methods utilizing surrogates constructed from corrected physics-based low-fidelity models are, in many cases, the most efficient. This article reviews a particular technique of this type, namely, shape-preserving response prediction (SPRP), which works on the level of the model responses to correct the underlying low-fidelity models. The formulation and limitations of SPRP are discussed. Applications to several engineering design problems are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.