Abstract

This paper focuses on the development of a surrogate model to predict the macroscopic elastic properties of polymer composites doped with spherical particles. To this aim, a polynomial chaos expansion based Kriging metamodeling technique has been developed. The training experimental design is constructed through a dataset of numerical representative volume elements (RVEs) considering randomly dispersed spherical particles. The RVEs are discretized using finite elements, and the effective elastic properties are obtained by implementing periodic boundary conditions. Parametric analyses are reported to assess the convergence of the scale of the RVE and the mesh density. The accuracy of the proposed metamodelling approach to bypass the computationally expensive numerical homogenization has been evaluated through different metrics. Overall, the presented results evidence the efficiency of the proposed surrogate modelling, enabling the implementation of computationally intensive techniques such as material optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.