Abstract

Several multi-frequency polarization studies have shown the presence of systematic Faraday Rotation gradients across the parsec-scale jets of Active Galactic Nuclei (AGN), taken to be due to the systematic variation of the line-of-sight component of a helical magnetic (B) field across the jet. Other studies have confirmed the presence and sense of these gradients in several sources, thus providing evidence that these gradients persist over time and over large distances from the core. However, we find surprising new evidence for a reversal in the direction of the Faraday Rotation gradient across the jet of B1803+784, for which multi-frequency polarization observations are available at four epochs. At our three epochs and the epoch of Zavala & Taylor (2003), we observe transverse Rotation Measure (RM) gradients across the jet, consistent with the presence of a helical magnetic field wrapped around the jet. However, we also observe a "flip" in the direction of the gradient between June 2000 and August 2002. Although the origins of this phenomena are not entirely clear, possibly explanations include (i) the sense of rotation of the central supermassive black hole and accretion disc has remained the same, but the dominant magnetic pole facing the Earth has changed from North to South; (ii) a change in the direction of the azimuthal B field component as a result of torsional oscillations of the jet; and (iii) a change in the relative contributions to the observed rotation measures of the "inner" and "outer" helical fields in a magnetic-tower model. Although we cannot entirely rule out the possibility that the observed changes in the RM distribution are associated instead with changes in the thermal-electron distribution in the vicinity of the jet, we argue that this explanation is unlikely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.