Abstract
Gas bubble motion in a blood vessel causes temporal and spatial gradients of shear stress at the cell surface lining the vessel wall as the bubble approaches the cell, moves over it and passes it by. Rapid reversals occur in the sign of the shear stress imparted to the cell surface during this motion. These may result in injury to the cell. The presence of a soluble surfactant in the bulk medium reduces the level of the shear stress gradients imparted to the cell surface as compared to an equivalent surfactant-free system and is an important therapeutic aid. This is particularly true for a very small vessel. In this study, we analyze various physical and chemical properties of any given soluble surfactant to ascertain the relative significance of the property of the surfactant on the reduction in the level of the shear stress gradients imparted to the cell surface in such a vessel. While adsorption, desorption, and maximum possible monolayer interface surfactant concentration significantly impact the shear stress levels, physical properties such as the bulk or surface diffusivity do not appear to have large effects. At a given diameter, surfactants with k(a)/(k(d)d>O(10)⁻⁵ and Γ(∞)/C(0)d>9.5 x 10⁻⁴ are noted to be preferable from the point of view of an increased gap size between the bubble and vessel wall, and a corresponding reduction in the shear stress level imparted to an endothelial cell. The shear stress characteristics of nearly occluding bubbles, in contrast with smaller sized bubbles under identical conditions, are most affected by the introduction of a surfactant in regard to shear stress levels. These observations could form a basis for choosing surfactants in treating gas embolism related illnesses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.