Abstract

LiAlH4 and NaAlH4 are considered to be promising hydrogen storage materials due to their high hydrogen density. However, their practical use is hampered by the lack of hydrogen reversibility along with poor kinetics. Nanosizing is an effective strategy to enable hydrogen reversibility under practical conditions. However, this has remained elusive as the synthesis of alanate nanoparticles has not been explored. Herein, a simple solvent evaporation method is demonstrated to assemble alanate nanoparticles with the use of surfactants as a stabilizer. More importantly, the roles of the surfactants in enabling control over particle size and morphology was determined. Surfactants with long linear carbon chains and matching the hard character of alanates are more prone to lead to the formation of small particles of ~10 nm due to steric hindrance. This can result in significant shifts in the temperature for hydrogen release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.