Abstract

We report a molecular dynamics study of cobalt bis(dicarbollide) anions [(B(9)C(2)H(8)X(3))(2)Co](-) (XCD(-)) commonly used in liquid-liquid extraction (X = H, Me, Cl, or Br), showing that these anions, although lacking the amphiphilic topology, behave as anionic surfactants. In pure water, they display "hydrophobic attractions", leading to the formation of aggregates of different sizes and shapes depending on the counterions. When simulated at a water/"oil" interface, the different anions (HCD(-), MeCD(-), CCD(-), and BrCD(-)) are found to be surface active. As a result, the simulated M(n+) counterions (M(n+) = Na(+), K(+), Cs(+), H(3)O(+), UO(2)(2+), Eu(3+)) concentrate on the aqueous side of the interface, forming a "double layer" whose characteristics are modulated by the hydrophobic character of the anion and by M(n+). The highly hydrophilic Eu(3+) or UO(2)(2+) cations that are generally "repelled" by aqueous interfaces are attracted by dicarbollides near the interface, which is crucial as far as the mechanism of assisted cation extraction to the oil phase is concerned. These cations interact with interfacial XCD(-) in their fully hydrated Eu(H(2)O)(9)(3+) and UO(2)(H(2)O)(5)(2+) forms, whereas the less hydrophilic monocharged cations display intimate contacts via their X substituents. The results obtained with the TIP3P and OPLS models for the solvents are confirmed with other water models (TIP5P or a polarizable 4P-Pol water) and with more polar "oil" models. The importance of interfacial phenomena is further demonstrated by simulations with a high oil-water ratio, leading to the formation of a micelle covered with CCD's. We suggest that the interfacial activity of dicarbollides and related hydrophobic anions is an important feature of synergism in liquid-liquid extraction of hard cations (e.g., for nuclear waste partitioning).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.