Abstract

In this note we consider asymptotically flat manifolds with non-negative scalar curvature and an inner boundary which is an outermost minimal surface. We show that there exists an upper bound on the mean curvature of a constant mean curvature surface homologous to a subset of the interior boundary components. This bound allows us to find a maximizer for the constant mean curvature of a surface homologous to the inner boundary. With this maximizer at hand, we can construct an increasing family of sets with boundaries of increasing constant mean curvature. We interpret this familiy as a weak version of a CMC foliation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.