Abstract

Understanding the wettability of clay mineral surfaces is crucial for enhancing oil recovery, investigating primary migration of hydrocarbon, and evaluating the performance of sealing rocks in a petroleum system. On the basis of molecular dynamics simulations, we investigated the interactions between four typical clay minerals (i.e., pyrophyllite, montmorillonite, illite, and kaolinite) and confined pore fluids (i.e., water/alkane/salts). The influences of surface group, layer charge, and salts on the wettability of clay surfaces were revealed. As the layer charge increases, the hydrophilicity of the montmorillonite basal surface gradually increases. The basal surface of 2:1-type pyrophyllite is completely alkane-wet independent of salts. However, for 1:1-type kaolinite, the presence of salts makes the siloxane surface completely water-wet, whereas it is partially alkane-wet at the absence of salts. In general, the salt ions adsorbed onto clay surfaces promote the surface hydrophilicity. By using nonequil...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.