Abstract

We present results illustrating the effects of using explicit summation terms for the r − 6 dispersion term on the interfacial properties of normal and branched alkanes. We study two all-atom force fields, the OPLS force field of Jorgensen et al. and the exponential-6 force field of Smith and co-workers. We find that the OPLS force field offers excellent agreement with experimental data for surface tension at low temperatures, while the Smith force field agrees well at lower molecular weights. Cutting off the dispersion term at a finite distance r c can have pronounced effects on interfacial properties, with as much as a 20% reduction in the measured liquid–vapour surface tension for r c = 12 Å. Our results also suggest the need for long simulation for normal alkanes, as equilibrium values are not reached for nearly 3 ns or more. Examining the effect of molecular weight on the surface tension, we find that the data for both force fields show excellent agreement with the dependence proposed in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.