Abstract
A theoretical model of the evaporation of a pure liquid layer is developed. We focus on the influence of an inert gaseous component, in addition to vapor, on surface-tension-driven Bénard instabilities. It is assumed that the gas phase is perfectly mixed at some distance from the liquid–gas interface (given composition, pressure, and temperature). If this distance is not much larger than the liquid layer thickness, it is shown that a reduction of the full two-layer problem to a one-layer problem is possible, provided the evaporation rate is not too large. An analytical expression is given for the corresponding dimensionless heat transfer coefficient (a generalized, wavenumber-dependent Biot number) at the evaporating interface. The approach is validated through a comparison with a direct numerical resolution of the full two-layer problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.