Abstract

We have reported a straightforward strategy to fabricate Li4Ti5O12 composites coated with N-doped carbon layer by using NH3 as N source and sugar as C source, which is a benefit for optimizing carbon layer thickness and tuning atomic ratio of N/C. The composite was synthesized by a conventional solid state reaction with ball milled mixture of TiO2, Li2CO3, and sugar as the precursor, then followed by a high temperature annealing in the atmosphere of Ar and NH3. The choice of titanium source has an impact on the Li4Ti5O12 surface morphology as well as electrochemical properties. N-doped TiO2 can lead to the generation of uniform N-doped C-coating layer, resulting in improved electrochemical performances at high current rate. The N-doped C-coating Li4Ti5O12 obtained by using Anatase TiO2 produces a serrated thin carbon layer, showing the best electrochemical behaviors with the discharge capacity of 100 mAh g−1 at high rate of 24 C and 92.2% of initial capacity after 800 cycles at 12 C, which should be one of the promising anode materials for hybrid electric vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.