Abstract

Abstract The characteristics of earthquake surface ruptures, such as geometry, slip distribution, and coseismic deformation, contain important information about the earthquake rupture process, and so investigations and analyses of earthquake surface rupture have played a crucial role in modern earthquake hazard studies, especially with the increasing availability of high-resolution topographic and imagery data for tectono-geomorphic interpretation. In this study, we use Structure from Motion (SfM) photogrammetry to build a 1 m resolution digital elevation model (DEM) of the fault and combine this with filed observations to map the surface ruptures of the 1931 M8.0 Fuyun earthquake, China. These high-resolution topographic data enable to identify and measure the displaced gullies, and so the rupture locations and along-strike slip distribution are obtained in detail. Four paleoearthquake events are identified through the offset cluster characteristics. The coseismic offset of the 1931 Fuyun earthquake is extracted from the offset distribution, which shows four continuous undulations along the fault strike, corresponding to the four segments of surface rupture. Moreover, a high offset gradient is observed in the step area connected by the rupture segment. These findings, combined with the width and bending angle of the step area at the joint of the rupture segment, indicate that the 1931 Fuyun earthquake was a cascade rupture formed by four rupture segments. This study expands the available offset measurement data of Fuyun fault and confirms the applicability of high-resolution topographic data to active tectonic research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.