Abstract

The objective of this research is to develop the surface roughness and cutting force models by using the air blow cutting of the aluminum in the ball-end milling process. The air blow cutting proposed in order to reduce the use of the cutting fluid. The surface roughness and cuttting force models are proposed in the exponential forms which consist of the cutting speed, the feed rate, the depth of cut, the tool diameter, and the air blow pressure. The coefficients of the surface roughness and cutting force models are calculated by utilizing the multiple regression with the least squared method at 95% significant level. The effects of cutting parameters on the cutting force are investigated and measured to analyze the relation between the surface roughness and the cutting conditions. The experimentally obtained results showed that the cutting force has the same trend with the surface roughness. The surface plots are constructed to determine the optimum cutting condition referring to the minimum surface roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.