Abstract
This study investigates the surface quality and bacterial adhesion properties of various dental materials, including indirect composites, veneering composites, direct composites, polyether ether ketone (PEEK), and two millable polymethyl methacrylate (PMMA). Material specimens were processed following manufacturer instructions, initially evaluated for surface roughness and Streptococcus sanguinis (S. sanguinis) adhesion. Subsequently, toothbrushing simulation was employed to simulate aging, and changes in material surfaces were assessed via roughness measurements and bacterial adhesion testing. Prior to simulated aging, direct and indirect composites exhibited the lowest roughness values. However, after the simulated toothbrushing, veneering composites displayed the highest roughness levels. Both PMMA materials demonstrated the highest S. sanguinis adhesion levels, both before and after artificial aging. Interestingly, the indirect composite material showed a reduction in bacterial adhesion following toothbrushing simulation. Surprisingly, this study did not reveal a clear correlation between roughness and bacterial adhesion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.