Abstract
Optical interferometry techniques were used to measure the surface resistivity/conductivity of carbon steel samples in blank seawater and in seawater with different concentrations of a corrosion inhibitor, without any physical contact. The measurement of the surface resistivity/conductivity of carbon steel samples was carried out in blank seawater and in seawater with a concentration range of 5–20ppm of RA-41 corrosion inhibitor, at room temperature. In this investigation, the real-time holographic interferometry was carried out to measure the thickness of anodic dissolved layer or the total thickness, Utotal, of the formed oxide layer of carbon steel samples during the alternating current (AC) impedance of the samples in blank seawater and in 5–20ppm RA-41 inhibited seawater, respectively. In other words, the surface resistivity/conductivity of carbon steel samples was determined simultaneously by holographic interferometry, an electromagnetic method, and by the Electrochemical Impedance (E.I) spectroscopy, an electronic method. In addition, a mathematical model was derived in order to correlate between the AC impedance (resistance) and to the surface (orthogonal) displacement of the surface of the samples in solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.