Abstract
Biofilms are ubiquitous surface-associated bacterial communities embedded in an extracellular matrix. While it is commonly assumed that biofilm-dwelling cells are glued together by the matrix, how the cell-matrix interaction depends on the specific biochemistry of the matrix components and how this interaction varies during biofilm growth remains unclear. Here, we investigated cell-matrix interactions in Vibrio cholerae ( Vc ), the causative agent of cholera. We combine genetics, microscopy, simulation, and biochemical tools to show that Vc cells are not attractive to V ibrio p oly s accharide (VPS), the main matrix component, but they can be bridged with each other and to the VPS network through crosslinking by Bap1. Downregulation of VPS and surface trimming by the polysaccharide lyase RbmB cause surface remodeling as biofilms age, shifting the nature of cell-matrix interactions from attractive to repulsive and facilitating cell dispersal as aggregated groups. Our results suggest a new conceptual model in understanding the intricate cell-matrix interaction as the major driver for biofilm development, which is potentially generalizable to certain other biofilm-forming species and exopolysaccharides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.