Abstract

This paper studied the surface quality (damage, morphology, and phase transformation) of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in CAD/CAM milling, and subsequent polishing, sintering and sandblasting processes applied in dental restorations. X-ray diffraction and scanning electron microscopy (SEM) were used to scan all processed surfaces to determine phase transformations and analyse surface damage morphology, respectively. The average surface roughness (Ra) and maximum roughness (Rz) for all processed surfaces were measured using desk-top SEM-assisted morphology analytical software. X-ray diffraction patterns prove the sintering-induced monoclinic-tetragonal phase transformation while the sandblasting-induced phase transformation was not detected. The CAD/CAM milling of pre-sintered Y-TZP produced very rough surfaces with extensive fractures and cracks. Simply polishing or sintering of milled pre-sintered surfaces did not significantly improve their surface roughness (ANOVA, p>0.05). Neither sintering-polishing of the milled surfaces could effectively improve the surface roughness (ANOVA, p>0.05). The best surface morphology was produced in the milling-polishing-sintering process, achieving Ra=0.21±0.03µm and Rz=1.73±0.04µm, which meets the threshold for bacterial retention. Sandblasting of intaglios with smaller abrasives was recommended as larger abrasive produced visible surface defects. This study provides technical insights into process selection for Y-TZP to achieve the improved restorative quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.