Abstract

Three inorganic adsorbents were applied as templates to produce porous carbons from polystyrene-based organic polymers. As matrices, amorphous silica gel, mesoporous alumina and microporous zeolite 13X were used. Organic precursors were polystyrene sulfonic acid (co-maleic acid) sodium salt and polystyrene co-maleic acid isobutyl/methyl mixed ester. The impregnated templates were carbonized at 800 °C. After removal of inorganic matrices porous carbons were obtained. Materials were characterized by adsorption of nitrogen, thermal analysis, potentiometric titration and SEM. Owing to the template carbonization, highly mesoporous carbons were obtained ( S BET up to 1500 m 2/g, V t up to 3 cm 3/g) with majority of pores with sizes between 20–200 Å. Although the carbons were not replicas of their matrices, the carbonization within the confined space with utilization of self-released pore formers resulted in unique carbonaceous materials with very acidic surface. That acidity is linked to either exothermic effect of sodium reactivity with moist air or susceptibility for air oxidation of small graphene layers formed in the confined pore space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.