Abstract

We use an ab initio B3LYP approximation to perform a quantitative analysis of the electronic and structural properties of hydrogen terminated (100), (110), and (111) diamond surfaces. We also study the charge transfer produced by the adsorption of a number of molecular species, including NO2, NO, and O3. Our results shed light on the understanding of hydrogenated diamond surface conductivity and demonstrate that combination of surface termination and molecular species is key to controlling hole doping on diamond. This study, which does not rely on any empirical parameters, also provides guidelines for the choice of adsorbate molecules that yield desired hole injection into the hydrogenated diamond surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.