Abstract

Cinchona alkaloids are frequently used for chiral modification of supported noble metal catalysts employed in heterogeneous enantioselective hydrogenation. In order to gain molecular insight into the surface processes occurring at the metal/liquid interface, cinchonidine (CD) adsorption on vapor-deposited Rh/Al2O3 films has been studied in the presence of solvent and hydrogen by means of attenuated total reflection infrared (ATR-IR) spectroscopy. The spectrum of CD adsorbed on Rh exhibited two dominant signals at 1593 and 1511 cm(-1), which are characteristic of a surface species having a quinoline ring tilted with respect to the metal. Interestingly, no adsorbed modifier in the flat geometry (quinoline parallel to the metal plane) was observed. During desorption, these signals vanished, and a new prominent signal appeared at 1601 cm(-1) which belongs to a species with the quinoline ring hydrogenated on the heteroaromatic side. Concentration-dependent experiments and the reversibility of the observed phenomenon indicate that CD was readily hydrogenated to 1',2',3',4',10,11-hexahydrocinchonidine (CDH(6)) on Rh. The ATR-IR spectra also reveal that the flat species was indeed immediately hydrogenated when CD was provided from solution, and the only visible adsorbed species was the tilted species, which displaced the hydrogenation product from the metal surface. In the absence of dissolved CD, during desorption, the tilted species was converted to the flat species and rapidly hydrogenated. The hydrogenation product was stable on the metal surface only in the absence of CD. Therefore, the adsorption strength of the different species is as follows: flat >> tilted > CDH(6). Evidence for the formation of the flat species and its role as an intermediate to the hydrogenation product is given by an experiment in which CD was adsorbed in the absence of dissolved hydrogen after surface cleaning. The adsorption and hydrogenation of CD on Rh deviate significantly from that observed earlier on Pt and Pd under similar conditions, where the flat species could be observed even in the presence of hydrogen. This difference is attributed to the weaker interaction and lower hydrogenation rate occurring on Pt and Pd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.