Abstract

The surface plasmon response of metal nanoparticles is studied for different shapes and physical environments. For polyhedral nanoparticles, the surface plasmon resonances are studied as a function of the number of faces and vertices. The modification of these surface plasmons by different surrounding media and the presence of a substrate or other nanoparticles is also discussed. We found that polyhedral nanoparticles composed with less faces show more surface plasmon resonances, and as the nanoparticle becomes more symmetric, the main surface plasmon resonance is blue-shifted. It is also found that the corners induce more surface plasmons in a wider energy range. In the presence of a substrate, multipolar plasmon resonances are induced, and as the nanoparticle approaches the substrate, such resonances are red-shifted. The interaction among nanoparticles also induces multipolar resonances, but they can be red or blue-shifted depending on the polarization of the external field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.