Abstract

We investigate label-free measurement of molecular distribution by super-resolved Raman microscopy using surface plasmon (SP) localization. Localized SP was formed with plasmonic nanopost arrays (PNAs) for measurement of the molecular distribution in HeLa cells. Compared with conventional Raman microscopy on gold thin films, PNAs induce a localized near-field, which allows for the enhancement of the peak signal-to-noise ratio by as much as 4.5 dB in the Raman shifts. Super-resolved distributions of aromatic amino acids and lipids (C-C stretching and C-H2 twist mode) as targets in HeLa cells were obtained after image reconstruction. Results show almost 4-fold improvement on average in the lateral precision over conventional diffraction-limited Raman microscopy images. Combined with axial imaging in an evanescent field, the results suggest an improvement in optical resolution due to superlocalized light volume by more than an order of magnitude over that of conventional diffraction-limited Raman microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.