Abstract

Surface photovoltage spectroscopy is based on the photostimulated depopulation and population of surface states brought about by sub-bandgap monochromatic illumination, while the over-all number of bulk free carriers remains essentially unchanged. Such transitions and their transients (as determined by changes is the contact potential difference) allow the direct determination of the energy positions and the dynamic parameters of the surface states. Surface photovoltage spectroscopy was successfully applied to the surfaces of CdS, ZnO, and GaAs. A model was developed which accounts for the processes involved in surface photovoltage spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.