Abstract

Techniques for large‐area pattern formation on polymeric substrates are important for fabricating a large variety of functional devices, such as flexible electronics, tunable optical devices, adhesives, and so on. The present study demonstrates a method for pattern formation on poly(dimethylsiloxane) that involves grafting methacrylate polymers through photo‐initiated polymerization. The influence of substrate stiffness and monomers type on pattern formation was investigated. Firstly, the stiffness of the substrate was found to affect the topology of the patterns produced. The gap width of convex regions of the pattern was enlarged with decreasing stiffness. It was found that the gap width trended in a manner that was consistent with previous reports, but in this study, relatively large gap widths were observed compared with those from previous studies. Secondly, it was revealed that the solubility of the monomer in the poly(dimethylsiloxane) precursor was the dominant factor in determining whether or not pattern formation occurred. When using insoluble monomers (glycidyl methacrylate and benzyl methacrylate), characteristic patterns were observed. It is speculated that intermolecular attractive forces between the grafted polymers induce lateral aggregation on the substrate, resulting in buckling instability of the grafted polymer layer caused by a mismatch in the equilibrium between the grafted polymer layer and the substrate. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.