Abstract

Despite widespread focus on porous carbons for lithium-sulfur battery cathode materials, electrode design to preserve mass-specific performance and sustained extended cycling stability remains a challenge. Here, we demonstrate electrochemically etched porous silicon as a sacrificial template to produce a new class of functional mesoporous carbons optimized for dual chemical and physical confinement of soluble polysulfides in lithium-sulfur battery cathodes. Melt infiltration loading of sulfur at 60 wt% enables initial discharge capacity of 1350 mAh/gsulfur at rates of 0.1 C - approaching theoretical capacity of 1675 mAh/gsulfur. Cycling performance measured at 0.2 C indicates 81% capacity retention measured over 100 cycles with 830 mAh/gsulfur capacity. Unlike other carbons, this template combines structural properties necessary for sulfur containment and polysulfide confinement to achieve high specific capacity, but also boasts surface-bound oxygen-containing functional groups that are able to chemically anchor the soluble Li2Sn species on the interior of the mesoporous carbon to sustain cycling performance. In turn, this elucidates a scalable and competitive material framework that is capable, without the addition of additional membranes or inactive anchoring materials, of providing the simultaneous anchoring and confinement effects necessary to overcome performance limitations in lithium sulfur batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.