Abstract

The textile industry is one of the largest and high water-consuming manufacturing sectors in the world and hence releases a huge volume of wastewater. At different stages of textile production, large amounts of effluents are discharged which are heavily contaminated with dyes and fluorescent brighteners, vegetable oils, fats, dissolved solids, organic acids, suspended solids, toxic metals, fibres, polymeric impurities, etc. This pollution severely deteriorates the aquatic ecosystems and imposes an unseen threat to humans, marine life, and the environment. Removal of such pollutants from wastewater is urgently demanding effective methods of treatment. In this context, several techniques such as membrane separation, ion exchange, coagulation, ozonation, adsorption, chemical reaction, electrodialysis, filtration, photocatalytic degradation, flocculation, reverse osmosis, biological degradation,etc have been adopted worldwide. Among the above-mentioned technologies, adsorption is proved to be one of the efficient methods for the removal of contaminants from wastewater owing to its simple design, ease of operation, high adsorption capacity, insensitivity, flexibility, etc. Recently, carbon nanotube (CNT) particularly surface-modified CNT and its derivatives as adsorbents are paid a lot of attention among the scientific community and industries across the globe due to their distinctive features i.e. cylindrical hollow structure, large surface area, flexible surface chemistry, higher sorption capacity,and well-flourished mesopores. Hence, in this chapter, we focus on the role of surface-modified carbon nanotubes in the removal of textile effluents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.