Abstract

Bone implant-associated infection is one of the major concerns in orthopedics, and may even result in implant failure. To this end, we developed a strategy for the fabrication of an antibacterial coating on titanium (Ti) implants with pH-response to combat bacteria-mediated acidification of the local microenvironment. It includes three steps: first, we synthesized levofloxacin (Levo)-loaded zeolitic imidazolate framework-8 (ZIF-8@Levo) nanoparticles; second, the nanoparticles were loaded onto the collagen-modified Ti substrates by the cathode electrophoresis deposition (EPD) method; third, gelatin (Gel) and chitosan (Chi) multilayers were spin-coated on the modified Ti substrates, since the chelating effect of Gel and Chi would reduce the hydrolysis of ZIF-8@Levo for a sustained release of Levo and Zn2+. The fabricated samples of MOF@Levo/LBL promoted in vitro adhesion, proliferation, and differentiation of osteoblasts. Moreover, the MOF@Levo/LBL samples exhibited strong antibacterial ability against Escherichia coli and Staphylococcus aureus through hydrolysis of ZIF-8 nanoparticles, thereby creating a marginally alkaline microenvironment. Furthermore, in vivo implantation in a femur-infected rat model revealed that MOF@Levo/LBL implants effectively inhibited bacterial adhesion, apart from significantly improving osseointegration of the Ti implants. The study provides a promising alternative for fabricating multifunctional Ti implants with strong antibacterial capacity and enhanced bone formation for potential orthopedic application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.