Abstract
The present work focuses on the development of functional polyurethane hybrids through the incorporation of surface modified TiO2 nanoparticles. For improving the nano-particle dispersion and increasing possible interactions between nano-particles and polyurethane matrix, the surface of the nano-particles was modified with 1,3,5-triazine core silane coupling agent. The surface modification of nanoparticles was confirmed by FESEM, FT-IR and Raman spectroscopic techniques. The functionalized nanoparticles were then inscribed in 0, 1 and 2 weight percentages into polyurethane matrix. The as prepared composite coatings were investigated for various anti-microbial, thermo-mechanical and anticorrosive properties. The tensile strength of polyurethane was improved by 300 % upon addition of 2 wt% of modified TiO2 nanoparticles as compared to neat polyurethane. Fog test and electrochemical polarization studies suggest that the corrosion resistance increases with increase of the modified TiO2 content in the coating formulation. The composite coatings also have good resistance towards various bacterial and fungal stains as compared to the pure polyurethanes. The coatings substantially gain hydrophilic nature symbiotically with TiO2 content suggesting its potential application as self-cleanable material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.