Abstract

β-NaYF4:Yb,Er upconversion nanophosphor (UCNP) is known as one of the most efficient NIR-to-visible upconversion materials, which shows great potential in bioanalytical chemistry and bioimaging. However, its applications are greatly limited due to its low water dispersibility and thus poor biocompatibility. In this paper, poly(acrylic acid) (PAA)-based ligand exchange strategies are carried out to modify oleic acid-capped hydrophobic β-NaYF4:Yb,Er UCNPs into hydrophilic ones. After efficient surface modification, the presence of free carboxylic acid groups on the surfaces of UCNPs results in high solubility in water, and also allows further conjugation with NH2-containing biomolecules. Facilitated by the covalent linkage between the-COOH groups on UCNPs surfaces and-NH2 groups in antigen/antibody, a sensitive immunosensor is constructed by using PAA-functionalized β-NaYF4:Yb,Er UCNPs as biolabels. Through monitoring the upconversion fluorescence intensity or fluorescent imaging of the final immunocomplexes, high sensitivity is achieved for the proposed immunoassay and as low as 0.1 ng/mL goat anti-human immunoglobulin G (IgG) can be detected, which suggests that PAA-modified UCNPs may serve as an ideal candidate for use as bioanalysis and bioimaging probes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.