Abstract

In this study, the surface modification of thin ink films with added nanoparticles was used to improve the functional properties of ink applied on paperboard substrates. The surface modification was performed by additional exposure of the samples to xenon radiation. Anatase TiO2, rutile TiO2 and ZnO were added to the base ink. The effect of surface modification on the surface, structural, and mechanical properties of the printed ink films was determined by FTIR-ATR spectroscopy, calculating the surface free energy and adhesion parameters, performing the rub resistance test of the printed samples, and by measuring the resistance to bending. Color measurements on the ink films were performed in order to observe the optical properties of unmodified and modified samples. The results showed that surface modification significantly improved the adhesion properties of the thin ink films and the mechanical properties of the samples. The results obtained on uncoated and coated paperboard showed that the addition of rutile TiO2 and ZnO nanoparticles had the greatest effect on the rub resistance of the ink films. The results of the color analysis showed that the addition of nanoparticles did not change the optical properties of the modified ink films and that rutile TiO2 and ZnO nanoparticles improved the lightfastness of the applied ink films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.