Abstract

We study the surface elastic response of pure Ni, the random alloy FeNiCr and an average FeNiCr alloy in terms of the surface lattice Green’s function. We propose a scheme for computing per-site Green’s function and study their per-site variations. The average FeNiCr alloys accurately reproduces the mean Green’s function of the full random alloy. Variation around this mean is largest near the edge of the surface Brillouin-zone and decays as q −2 with wavevector q towards the Γ-point. We also present expressions for the continuum surface Green’s function of anisotropic solids of finite and infinite thickness and show that the atomistic Green’s function approaches continuum near the Γ-point. Our results are a first step towards efficient contact calculations and Peierls–Nabarro type models for dislocations in high-entropy alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.