Abstract

In machining processes, a major quality related output is integrity of the machined part surface. In machining of difficult-to-cut materials, a drastic decrease in tool-life makes the machining process even more difficult. By considering the broader perspective of the machining system tailored towards sustainable operations, in this work an alternative—cryogenic machining is evaluated for machining performance. The surface integrity characteristics of machined surface as a function of depth have been analyzed for different combinations of cooling/lubrication machining conditions. The residual stresses on the machined surface and sub-surface, surface hardness, and surface roughness are among the significant characteristics studied in this work. The results show that cryogenic machining processes can be implemented to improve all major surface integrity characteristics, thus improving the final product quality level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.